
Django-Selectable Documentation
Release 1.0.0

Mark Lavin

Oct 29, 2017

Contents

1 Features 3

2 Installation Requirements 5

3 Documentation 7

4 Additional Help/Support 9

5 Contributing 11
5.1 Overview . 11
5.2 Getting Started . 12
5.3 Defining Lookups . 14
5.4 Advanced Usage . 18
5.5 Admin Integration . 24
5.6 Testing Forms and Lookups . 27
5.7 Fields . 29
5.8 Widgets . 30
5.9 Settings . 31
5.10 Contributing . 33
5.11 Release Notes . 34

6 Indices and tables 41

i

ii

Django-Selectable Documentation, Release 1.0.0

Tools and widgets for using/creating auto-complete selection widgets using Django and jQuery UI.

Contents 1

Django-Selectable Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Features

• Works with the latest jQuery UI Autocomplete library

• Auto-discovery/registration pattern for defining lookups

3

Django-Selectable Documentation, Release 1.0.0

4 Chapter 1. Features

CHAPTER 2

Installation Requirements

• Python 2.7, 3.3+

• Django >= 1.7, < 1.11

• jQuery >= 1.9, < 3.0

• jQuery UI >= 1.10, < 1.12

To install:

pip install django-selectable

Next add selectable to your INSTALLED_APPS to include the related css/js:

INSTALLED_APPS = (
'contrib.staticfiles',
Other apps here
'selectable',

)

The jQuery and jQuery UI libraries are not included in the distribution but must be included in your templates. See
the example project for an example using these libraries from the Google CDN.

Once installed you should add the urls to your root url patterns:

urlpatterns = [
Other patterns go here
url(r'^selectable/', include('selectable.urls')),

]

5

http://www.djangoproject.com/
http://jquery.com/
http://jqueryui.com/

Django-Selectable Documentation, Release 1.0.0

6 Chapter 2. Installation Requirements

CHAPTER 3

Documentation

Documentation for django-selectable is available on Read The Docs.

7

http://django-selectable.readthedocs.io/en/latest/

Django-Selectable Documentation, Release 1.0.0

8 Chapter 3. Documentation

CHAPTER 4

Additional Help/Support

You can find additional help or support on the mailing list: http://groups.google.com/group/django-selectable

9

http://groups.google.com/group/django-selectable

Django-Selectable Documentation, Release 1.0.0

10 Chapter 4. Additional Help/Support

CHAPTER 5

Contributing

If you think you’ve found a bug or are interested in contributing to this project check out our contributing guide.

If you are interested in translating django-selectable into your native language you can join the Transifex project.

Contents:

Overview

Motivation

There are many Django apps related to auto-completion why create another? One problem was varying support for the
jQuery UI auto-complete plugin versus the now deprecated bassistance version. Another was support for combo-boxes
and multiple selects. And lastly was a simple syntax for defining the related backend views for the auto-completion.

This library aims to meet all of these goals:

• Built on jQuery UI auto-complete

• Fields and widgets for a variety of use-cases:

– Text inputs and combo-boxes

– Text selection

– Value/ID/Foreign key selection

– Multiple object selection

– Allowing new values

• Simple and extendable syntax for defining backend views

11

http://readthedocs.org/docs/django-selectable/en/latest/contribute.html
https://www.transifex.com/projects/p/django-selectable/
http://jqueryui.com/demos/autocomplete/
http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/

Django-Selectable Documentation, Release 1.0.0

Related Projects

Much of the work here was inspired by things that I like (and things I don’t like) about django-ajax-selects. To see
some of the other Django apps for handling auto-completion see Django-Packages.

Getting Started

The workflow for using django-selectable involves two main parts:

• Defining your lookups

• Defining your forms

This guide assumes that you have a basic knowledge of creating Django models and forms. If not you should first read
through the documentation on defining models and using forms.

Including jQuery & jQuery UI

The widgets in django-selectable define the media they need as described in the Django documentation on Form
Media. That means to include the javascript and css you need to make the widgets work you can include {{ form.
media.css }} and {{ form.media.js }} in your template. This is assuming your form is called form in the
template context. For more information please check out the Django documentation.

The jQuery and jQuery UI libraries are not included in the distribution but must be included in your templates. How-
ever there is a template tag to easily add these libraries from the from the Google CDN.

{% load selectable_tags %}
{% include_jquery_libs %}

By default these will use jQuery v1.11.2 and jQuery UI v1.11.3. You can customize the versions used by pass them to
the tag. The first version is the jQuery version and the second is the jQuery UI version.

{% load selectable_tags %}
{% include_jquery_libs '1.11.2' '1.11.3' %}

Django-Selectable should work with jQuery >= 1.9 and jQuery UI >= 1.10.

You must also include a jQuery UI theme stylesheet. There is also a template tag to easily add this style sheet from
the Google CDN.

{% load selectable_tags %}
{% include_ui_theme %}

By default this will use the base theme for jQuery UI v1.11.4. You can configure the theme and version by passing
them in the tag.

{% load selectable_tags %}
{% include_ui_theme 'ui-lightness' '1.11.4' %}

Or only change the theme.

{% load selectable_tags %}
{% include_ui_theme 'ui-lightness' %}

12 Chapter 5. Contributing

http://code.google.com/p/django-ajax-selects/
http://djangopackages.com/grids/g/auto-complete/
http://docs.djangoproject.com/en/stable/topics/db/models/
http://docs.djangoproject.com/en/stable/topics/forms/
https://docs.djangoproject.com/en/stable/topics/forms/media/
https://docs.djangoproject.com/en/stable/topics/forms/media/
https://docs.djangoproject.com/en/stable/topics/forms/media/
http://code.google.com/apis/libraries/devguide.html#jquery
http://jquery.com/
http://jqueryui.com/
http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

Django-Selectable Documentation, Release 1.0.0

See the the jQuery UI documentation for a full list of available stable themes: http://jqueryui.com/download#
stable-themes

Of course you can choose to include these rescources manually:

.. code-block:: html

<link rel="stylesheet" href="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.3/
→˓themes/base/jquery-ui.css" type="text/css">

<link href="{% static 'selectable/css/dj.selectable.css' %}" type="text/css"
→˓media="all" rel="stylesheet">

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></
→˓script>

<script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.3/jquery-ui.js"></
→˓script>

<script type="text/javascript" src="{% static 'selectable/js/jquery.dj.selectable.
→˓js' %}"></script>

Note: jQuery UI shares a few plugin names with the popular Twitter Bootstrap framework. There are notes on using
Bootstrap along with django-selectable in the advanced usage section.

Defining a Lookup

The lookup classes define the backend views. The most common case is defining a lookup which searchs models
based on a particular field. Let’s define a simple model:

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Fruit(models.Model):

name = models.CharField(max_length=200)

def __str__(self):
return self.name

In a lookups.py we will define our lookup:

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import Fruit

class FruitLookup(ModelLookup):
model = Fruit
search_fields = ('name__icontains',)

This lookups extends selectable.base.ModelLookup and defines two things: one is the model on which we
will be searching and the other is the field which we are searching. This syntax should look familiar as it is the same

5.2. Getting Started 13

http://jqueryui.com/download#stable-themes
http://jqueryui.com/download#stable-themes

Django-Selectable Documentation, Release 1.0.0

as the field lookup syntax for making queries in Django.

Below this definition we will register our lookup class.

registry.register(FruitLookup)

Note: You should only register your lookup once. Attempting to register the same lookup class more than once will
lead to LookupAlreadyRegistered errors. A common problem related to the LookupAlreadyRegistered
error is related to inconsistant import paths in your project. Prior to Django 1.4 the default manage.py allows for
importing both with and without the project name (i.e. from myproject.myapp import lookups or from
myapp import lookups). This leads to the lookup.py file being imported twice and the registration code
executing twice. Thankfully this is no longer the default in Django 1.4. Keeping your import consistant to include the
project name (when your app is included inside the project directory) will avoid these errors.

Defining Forms

Now that we have a working lookup we will define a form which uses it:

from django import forms

from selectable.forms import AutoCompleteWidget

from .lookups import FruitLookup

class FruitForm(forms.Form):
autocomplete = forms.CharField(

label='Type the name of a fruit (AutoCompleteWidget)',
widget=AutoCompleteWidget(FruitLookup),
required=False,

)

This replaces the default widget for the CharField with the AutoCompleteWidget. This will allow the user to
fill this field with values taken from the names of existing Fruit models.

And that’s pretty much it. Keep on reading if you want to learn about the other types of fields and widgets that are
available as well as defining more complicated lookups.

Defining Lookups

What are Lookups?

Lookups define the corresponding ajax views used by the auto-completion fields and widgets. They take in the current
request and return the JSON needed by the jQuery auto-complete plugin.

Defining a Lookup

django-selectable uses a registration pattern similar to the Django admin. Lookups should be defined in a lookups.py
in your application’s module. Once defined you must register in with django-selectable. All lookups must extend from
selectable.base.LookupBase which defines the API for every lookup.

14 Chapter 5. Contributing

http://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups

Django-Selectable Documentation, Release 1.0.0

from selectable.base import LookupBase
from selectable.registry import registry

class MyLookup(LookupBase):
def get_query(self, request, term):

data = ['Foo', 'Bar']
return [x for x in data if x.startswith(term)]

registry.register(MyLookup)

Lookup API

LookupBase.get_query(request, term)
This is the main method which takes the current request from the user and returns the data which matches their
search.

Parameters

• request – The current request object.

• term – The search term from the widget input.

Returns An iterable set of data of items matching the search term.

LookupBase.get_item_label(item)
This is first of three formatting methods. The label is shown in the drop down menu of search results. This
defaults to item.__unicode__.

Parameters item – An item from the search results.

Returns A string representation of the item to be shown in the search results. The label can include
HTML. For changing the label format on the client side see Advanced Label Formats.

LookupBase.get_item_id(item)
This is second of three formatting methods. The id is the value that will eventually be returned by the
field/widget. This defaults to item.__unicode__.

Parameters item – An item from the search results.

Returns A string representation of the item to be returned by the field/widget.

LookupBase.get_item_value(item)
This is last of three formatting methods. The value is shown in the input once the item has been selected. This
defaults to item.__unicode__.

Parameters item – An item from the search results.

Returns A string representation of the item to be shown in the input.

LookupBase.get_item(value)
get_item is the reverse of get_item_id. This should take the value from the form initial values and return
the current item. This defaults to simply return the value.

Parameters value – Value from the form inital value.

Returns The item corresponding to the initial value.

LookupBase.create_item(value)
If you plan to use a lookup with a field or widget which allows the user to input new values then you must define
what it means to create a new item for your lookup. By default this raises a NotImplemented error.

Parameters value – The user given value.

5.3. Defining Lookups 15

Django-Selectable Documentation, Release 1.0.0

Returns The new item created from the item.

LookupBase.format_item(item)
By default format_item creates a dictionary with the three keys used by the UI plugin: id, value, label. These
are generated from the calls to get_item_id, get_item_value and get_item_label. If you want to
add additional keys you should add them here.

The results of get_item_label is conditionally escaped to prevent Cross Site Scripting (XSS) similar
to the templating language. If you know that the content is safe and you want to use these methods to in-
clude HTML should mark the content as safe with django.utils.safestring.mark_safe inside the
get_item_label method.

get_item_id and get_item_value are not escapted by default. These are not a XSS vector with the
built-in JS. If you are doing additional formating using these values you should be conscience of this fake and
be sure to escape these values.

Parameters item – An item from the search results.

Returns A dictionary of information for this item to be sent back to the client.

There are also some additional methods that you could want to use/override. These are for more advanced use cases
such as using the lookups with JS libraries other than jQuery UI. Most users will not need to override these methods.

LookupBase.format_results(self, raw_data, options)
Returns a python structure that later gets serialized. This makes a call to paginate_results prior to calling
format_item on each item in the current page.

Parameters

• raw_data – The set of all matched results.

• options – Dictionary of cleaned_data from the lookup form class.

Returns A dictionary with two keys meta and data. The value of data is an iterable extracted
from page_data. The value of meta is a dictionary. This is a copy of options with one additional
element more which is a translatable “Show more” string (useful for indicating more results on
the javascript side).

LookupBase.paginate_results(results, options)
If SELECTABLE_MAX_LIMIT is defined or limit is passed in request.GET then paginate_results will
return the current page using Django’s built in pagination. See the Django docs on pagination for more info.

Parameters

• results – The set of all matched results.

• options – Dictionary of cleaned_data from the lookup form class.

Returns The current Page object of results.

Lookups Based on Models

Perhaps the most common use case is to define a lookup based on a given Django model. For this you can extend
selectable.base.ModelLookup. To extend ModelLookup you should set two class attributes: model and
search_fields.

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

16 Chapter 5. Contributing

https://docs.djangoproject.com/en/stable/topics/pagination/
https://docs.djangoproject.com/en/stable/topics/pagination/#page-objects

Django-Selectable Documentation, Release 1.0.0

from .models import Fruit

class FruitLookup(ModelLookup):
model = Fruit
search_fields = ('name__icontains',)

registry.register(FruitLookup)

The syntax for search_fields is the same as the Django field lookup syntax. Each of these lookups are combined
as OR so any one of them matching will return a result. You may optionally define a third class attribute filters
which is a dictionary of filters to be applied to the model queryset. The keys should be a string defining a field lookup
and the value should be the value for the field lookup. Filters on the other hand are combined with AND.

User Lookup Example

Below is a larger model lookup example using multiple search fields, filters and display options for the auth.User
model.

from django.contrib.auth.models import User
from selectable.base import ModelLookup
from selectable.registry import registry

class UserLookup(ModelLookup):
model = User
search_fields = (

'username__icontains',
'first_name__icontains',
'last_name__icontains',

)
filters = {'is_active': True, }

def get_item_value(self, item):
Display for currently selected item
return item.username

def get_item_label(self, item):
Display for choice listings
return u"%s (%s)" % (item.username, item.get_full_name())

registry.register(UserLookup)

Lookup Decorators

Registering lookups with django-selectable creates a small API for searching the lookup data. While the amount of
visible data is small there are times when you want to restrict the set of requests which can view the data. For this
purpose there are lookup decorators. To use them you simply decorate your lookup class.

from django.contrib.auth.models import User
from selectable.base import ModelLookup
from selectable.decorators import login_required
from selectable.registry import registry

5.3. Defining Lookups 17

http://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups
https://docs.djangoproject.com/en/stable/topics/auth/#users

Django-Selectable Documentation, Release 1.0.0

@login_required
class UserLookup(ModelLookup):

model = User
search_fields = ('username__icontains',)
filters = {'is_active': True, }

registry.register(UserLookup)

Note: The class decorator syntax was introduced in Python 2.6. If you are using django-selectable with Python 2.5
you can still make use of these decorators by applying the without the decorator syntax.

class UserLookup(ModelLookup):
model = User
search_fields = ('username__icontains',)
filters = {'is_active': True, }

UserLookup = login_required(UserLookup)

registry.register(UserLookup)

Below are the descriptions of the available lookup decorators.

ajax_required

The django-selectable javascript will always request the lookup data via XMLHttpRequest (AJAX) request. This
decorator enforces that the lookup can only be accessed in this way. If the request is not an AJAX request then it will
return a 400 Bad Request response.

login_required

This decorator requires the user to be authenticated via request.user.is_authenticated. If the user is not
authenticated this will return a 401 Unauthorized response. request.user is set by the django.contrib.
auth.middleware.AuthenticationMiddleware which is required for this decorator to work. This mid-
dleware is enabled by default.

staff_member_required

This decorator builds from login_required and in addition requires that request.user.is_staff is True.
If the user is not authenticatated this will continue to return at 401 response. If the user is authenticated but not a staff
member then this will return a 403 Forbidden response.

Advanced Usage

We’ve gone through the most command and simple use cases for django-selectable. Now we’ll take a look at some of
the more advanced features of this project. This assumes that you are comfortable reading and writing a little bit of
Javascript making use of jQuery.

18 Chapter 5. Contributing

Django-Selectable Documentation, Release 1.0.0

Additional Parameters

The basic lookup is based on handling a search based on a single term string. If additional filtering is needed it can
be inside the lookup get_query but you would need to define this when the lookup is defined. While this fits a fair
number of use cases there are times when you need to define additional query parameters that won’t be known until
either the form is bound or until selections are made on the client side. This section will detail how to handle both of
these cases.

How Parameters are Passed

As with the search term, the additional parameters you define will be passed in request.GET. Since get_query
gets the current request, you will have access to them. Since they can be manipulated on the client side, these param-
eters should be treated like all user input. It should be properly validated and sanitized.

Limiting the Result Set

The number of results are globally limited/paginated by the SELECTABLE_MAX_LIMIT but you can also lower this
limit on the field or widget level. Each field and widget takes a limit argument in the __init__ that will be passed
back to the lookup through the limit query parameter. The result set will be automatically paginated for you if you
use either this parameter or the global setting.

Adding Parameters on the Server Side

Each of the widgets define update_query_parameters which takes a dictionary. The most common way to use
this would be in the form __init__.

class FruitForm(forms.Form):
autocomplete = forms.CharField(

label='Type the name of a fruit (AutoCompleteWidget)',
widget=selectable.AutoCompleteWidget(FruitLookup),
required=False,

)

def __init__(self, *args, **kwargs):
super(FruitForm, self).__init__(*args, **kwargs)
self.fields['autocomplete'].widget.update_query_parameters({'foo':

→˓'bar'})

You can also pass the query parameters into the widget using the query_params keyword argument. It depends on
your use case as to whether the parameters are known when the form is defined or when an instance of the form is
created.

Adding Parameters on the Client Side

There are times where you want to filter the result set based other selections by the user such as a filtering cities by
a previously selected state. In this case you will need to bind a prepareQuery to the field. This function should
accept the query dictionary. You are free to make adjustments to the query dictionary as needed.

<script type="text/javascript">
function newParameters(query) {

query.foo = 'bar';
}

5.4. Advanced Usage 19

Django-Selectable Documentation, Release 1.0.0

$(document).ready(function() {
$('#id_autocomplete').djselectable('option', 'prepareQuery',

→˓newParameters);
});

</script>

Note: In v0.7 the scope of prepareQuery was updated so that this refers to the current djselectable plugin
instance. Previously this refered to the plugin options instance.

Chained Selection

It’s a fairly common pattern to have two or more inputs depend one another such City/State/Zip. In fact there are
other Django apps dedicated to this purpose such as django-smart-selects or django-ajax-filtered-fields. It’s possible
to handle this kind of selection with django-selectable if you are willing to write a little javascript.

Suppose we have city model

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

from localflavor.us.models import USStateField

@python_2_unicode_compatible
class City(models.Model):

name = models.CharField(max_length=200)
state = USStateField()

def __str__(self):
return self.name

Then in our lookup we will grab the state value and filter our results on it:

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import City

class CityLookup(ModelLookup):
model = City
search_fields = ('name__icontains',)

def get_query(self, request, term):
results = super(CityLookup, self).get_query(request, term)
state = request.GET.get('state', '')
if state:

results = results.filter(state=state)
return results

def get_item_label(self, item):

20 Chapter 5. Contributing

https://github.com/digi604/django-smart-selects
http://code.google.com/p/django-ajax-filtered-fields/

Django-Selectable Documentation, Release 1.0.0

return "%s, %s" % (item.name, item.state)

registry.register(CityLookup)

and a simple form

from django import forms

from localflavor.us.forms import USStateField, USStateSelect

from selectable.forms import AutoCompleteSelectField,
→˓AutoComboboxSelectWidget

from .lookups import CityLookup

class ChainedForm(forms.Form):
city = AutoCompleteSelectField(

lookup_class=CityLookup,
label='City',
required=False,
widget=AutoComboboxSelectWidget

)
state = USStateField(widget=USStateSelect, required=False)

We want our users to select a city and if they choose a state then we will only show them cities in that state. To do this
we will pass back chosen state as addition parameter with the following javascript:

<script type="text/javascript">
$(document).ready(function() {

function newParameters(query) {
query.state = $('#id_state').val();

}
$('#id_city_0').djselectable('option', 'prepareQuery',

→˓newParameters);
});

</script>

And that’s it! We now have a working chained selection example. The full source is included in the example project.

Detecting Client Side Changes

The previous example detected selection changes on the client side to allow passing parameters to the lookup. Since
django-selectable is built on top of the jQuery UI Autocomplete plug-in, the widgets expose the events defined by the
plugin.

• djselectablecreate

• djselectablesearch

• djselectableopen

• djselectablefocus

• djselectableselect

• djselectableclose

5.4. Advanced Usage 21

http://jqueryui.com/demos/autocomplete/

Django-Selectable Documentation, Release 1.0.0

• djselectablechange

For the most part these event names should be self-explanatory. If you need additional detail you should refer to the
jQuery UI docs on these events.

The multiple select widgets include additional events which indicate when a new item is added or removed from the
current list. These events are djselectableadd and djselectableremove. These events pass a dictionary
of data with the following keys

• element: The original text input

• input: The hidden input to be added for the new item

• wrapper: The element to be added to the deck

• deck: The outer deck element

You can use these events to prevent items from being added or removed from the deck by returning false in the
handling function. A simple example is given below:

<script type="text/javascript">
$(document).ready(function() {

$(':input[name=my_field_0]').bind('djselectableadd', function(event,
→˓item) {

// Don't allow foo to be added
if ($(item.input).val() === 'foo') {

return false;
}

});
});

</script>

Submit On Selection

You might want to help your users by submitting the form once they have selected a valid item. To do this you simply
need to listen for the djselectableselect event. This event is fired by the text input which has an index of 0. If
your field is named my_field then input to watch would be my_field_0 such as:

<script type="text/javascript">
$(document).ready(function() {

$(':input[name=my_field_0]').bind('djselectableselect',
→˓function(event, ui) {

$(this).parents("form").submit();
});

});
</script>

Dynamically Added Forms

django-selectable can work with dynamically added forms such as inlines in the admin. To make django-selectable
work in the admin there is nothing more to do than include the necessary static media as described in the Admin
Integration section.

If you are making use of the popular django-dynamic-formset then you can make django-selectable work by passing
bindSelectables to the added option:

22 Chapter 5. Contributing

http://jqueryui.com/demos/autocomplete/#events
http://code.google.com/p/django-dynamic-formset/
http://code.google.com/p/django-dynamic-formset/source/browse/trunk/docs/usage.txt#259

Django-Selectable Documentation, Release 1.0.0

<script type="text/javascript">
$(document).ready(function() {

$('#my-formset').formset({
added: bindSelectables

});
});

</script>

Currently you must include the django-selectable javascript below this formset initialization code for this to work. See
django-selectable issue #31 for some additional detail on this problem.

Label Formats on the Client Side

The lookup label is the text which is shown in the list before it is selected. You can use the get_item_label method in
your lookup to do this on the server side. This works for most applications. However if you don’t want to write your
HTML in Python or need to adapt the format on the client side you can use the formatLabel option.

formatLabel takes two paramaters the current label and the current selected item. The item is a dictionary object
matching what is returned by the lookup’s format_item. formatLabel should return the string which should be
used for the label.

Going back to the CityLookup we can adjust the label to wrap the city and state portions with their own classes for
additional styling:

<script type="text/javascript">
$(document).ready(function() {

function formatLabel(label, item) {
var data = label.split(',');
return '' + data[0] + ', <span class=

→˓"state">' + data[1] + '';
}
$('#id_city_0').djselectable('option', 'formatLabel', formatLabel);

});
</script>

This is a rather simple example but you could also pass additional information in format_item such as a flag of
whether the city is the capital and render the state captials differently.

Using with Twitter Bootstrap

django-selectable can work along side with Twitter Bootstrap but there are a few things to take into consideration.
Both jQuery UI and Bootstrap define a $.button plugin. This plugin is used by default by django-selectable and
expects the UI version. If the jQuery UI JS is included after the Bootstrap JS then this will work just fine but the
Bootstrap button JS will not be available. This is the strategy taken by the jQuery UI Bootstrap theme.

Another option is to rename the Bootstrap plugin using the noConflict option.

<!-- Include Bootstrap JS -->
<script>$.fn.bootstrapBtn = $.fn.button.noConflict();</script>
<!-- Include jQuery UI JS -->

Even with this some might complain that it’s too resource heavy to include all of jQuery UI when you just want the
autocomplete to work with django-selectable. For this you can use the Download Builder to build a minimal set of
jQuery UI widgets. django-selectable requires the UI core, autocomplete, menu and button widgets. None of the

5.4. Advanced Usage 23

https://github.com/mlavin/django-selectable/issues/31
http://addyosmani.github.com/jquery-ui-bootstrap/
http://jqueryui.com/download/

Django-Selectable Documentation, Release 1.0.0

effects or interactions are needed. Minified this totals around 100 kb of JS, CSS and images (based on jQuery UI
1.10).

Note: For a comparison this is smaller than the minified Bootstrap 2.3.0 CSS which is 105 kb not including the
responsive CSS or the icon graphics.

It is possible to remove the dependency on the UI button plugin and instead use the Bootstrap button styles. This is
done by overriding the _comboButtonTemplate and _removeButtonTemplate functions used to create the
buttons. An example is given below.

<script>
$.ui.djselectable.prototype._comboButtonTemplate = function (input) {

var icon = $("<i>").addClass("icon-chevron-down");
// Remove current classes on the text input
$(input).attr("class", "");
// Wrap with input-append
$(input).wrap('<div class="input-append" />');
// Return button link with the chosen icon
return $("<a>").append(icon).addClass("btn btn-small");

};
$.ui.djselectable.prototype._removeButtonTemplate = function (item) {

var icon = $("<i>").addClass("icon-remove-sign");
// Return button link with the chosen icon
return $("<a>").append(icon).addClass("btn btn-small pull-right");

};
</script>

Admin Integration

Overview

Django-Selectables will work in the admin. To get started on integrated the fields and widgets in the admin make sure
you are familiar with the Django documentation on the ModelAdmin.form and ModelForms particularly on overriding
the default widgets. As you will see integrating django-selectable in the adminis the same as working with regular
forms.

Including jQuery & jQuery UI

As noted in the quick start guide, the jQuery and jQuery UI libraries are not included in the distribution but must be
included in your templates. For the Django admin that means overriding admin/base_site.html. You can include this
media in the block name extrahead which is defined in admin/base.html.

{% block extrahead %}
{% load selectable_tags %}
{% include_ui_theme %}
{% include_jquery_libs %}

{% endblock %}

See the Django documentation on overriding admin templates. See the example project for the full template example.

24 Chapter 5. Contributing

http://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.ModelAdmin.form
http://docs.djangoproject.com/en/stable/topics/forms/modelforms/
http://docs.djangoproject.com/en/stable/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets
http://docs.djangoproject.com/en/stable/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets
https://code.djangoproject.com/browser/django/trunk/django/contrib/admin/templates/admin/base_site.html
https://code.djangoproject.com/browser/django/trunk/django/contrib/admin/templates/admin/base.html
https://docs.djangoproject.com/en/stable/ref/contrib/admin/#overriding-admin-templates

Django-Selectable Documentation, Release 1.0.0

Using Grappelli

Grappelli is a popular customization of the Django admin interface. It includes a number of interface improvements
which are also built on top of jQuery UI. When using Grappelli you do not need to make any changes to the admin/
base_site.html template. django-selectable will detect jQuery and jQuery UI versions included by Grappelli and
make use of them.

Basic Example

For example, we may have a Farm model with a foreign key to auth.User and a many to many relation to our
Fruit model.

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Fruit(models.Model):

name = models.CharField(max_length=200)

def __str__(self):
return self.name

@python_2_unicode_compatible
class Farm(models.Model):

name = models.CharField(max_length=200)
owner = models.ForeignKey('auth.User', related_name='farms')
fruit = models.ManyToManyField(Fruit)

def __str__(self):
return "%s's Farm: %s" % (self.owner.username, self.name)

In admin.py we will define the form and associate it with the FarmAdmin.

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User
from django import forms

from selectable.forms import AutoCompleteSelectField,
→˓AutoCompleteSelectMultipleWidget

from .models import Fruit, Farm
from .lookups import FruitLookup, OwnerLookup

class FarmAdminForm(forms.ModelForm):
owner = AutoCompleteSelectField(lookup_class=OwnerLookup, allow_new=True)

class Meta(object):
model = Farm
widgets = {

'fruit': AutoCompleteSelectMultipleWidget(lookup_
→˓class=FruitLookup),

5.5. Admin Integration 25

https://django-grappelli.readthedocs.org

Django-Selectable Documentation, Release 1.0.0

}
exclude = ('owner',)

def __init__(self, *args, **kwargs):
super(FarmAdminForm, self).__init__(*args, **kwargs)
if self.instance and self.instance.pk and self.instance.owner:

self.initial['owner'] = self.instance.owner.pk

def save(self, *args, **kwargs):
owner = self.cleaned_data['owner']
if owner and not owner.pk:

owner = User.objects.create_user(username=owner.username, email='
→˓')

self.instance.owner = owner
return super(FarmAdminForm, self).save(*args, **kwargs)

class FarmAdmin(admin.ModelAdmin):
form = FarmAdminForm

admin.site.register(Farm, FarmAdmin)

You’ll note this form also allows new users to be created and associated with the farm, if no user is found matching the
given name. To make use of this feature we need to add owner to the exclude so that it will pass model validation.
Unfortunately that means we must set the owner manual in the save and in the initial data because the ModelForm
will no longer do this for you. Since fruit does not allow new items you’ll see these steps are not necessary.

The django-selectable widgets are compatitible with the add another popup in the admin. It’s that little green plus
sign that appears next to ForeignKey or ManyToManyField items. This makes django-selectable a user friendly
replacement for the ModelAdmin.raw_id_fields when the default select box grows too long.

Inline Example

With our Farm model we can also associate the UserAdmin with a Farm by making use of the InlineModelAdmin.
We can even make use of the same FarmAdminForm.

continued from above

class FarmInline(admin.TabularInline):
model = Farm
form = FarmAdminForm

class NewUserAdmin(UserAdmin):
inlines = [

FarmInline,
]

admin.site.unregister(User)
admin.site.register(User, NewUserAdmin)

The auto-complete functions will be bound as new forms are added dynamically.

26 Chapter 5. Contributing

https://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.ModelAdmin.raw_id_fields
http://docs.djangoproject.com/en/stable/ref/contrib/admin/#inlinemodeladmin-objects

Django-Selectable Documentation, Release 1.0.0

Testing Forms and Lookups

django-selectable has its own test suite for testing the rendering, validation and server-side logic it provides. However,
depending on the additional customizations you add to your forms and lookups you most likely will want to include
tests of your own. This section contains some tips or techniques for testing your lookups.

This guide assumes that you are reasonable familiar with the concepts of unit testing including Python’s unittest
module and Django’s testing guide.

Testing Forms with django-selectable

For the most part testing forms which use django-selectable’s custom fields and widgets is the same as testing any
Django form. One point that is slightly different is that the select and multi-select widgets are MultiWidgets. The
effect of this is that there are two names in the post rather than one. Take the below form for example.

models.py

from django.db import models

class Thing(models.Model):
name = models.CharField(max_length=100)
description = models.CharField(max_length=100)

def __unicode__(self):
return self.name

lookups.py

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import Thing

class ThingLookup(ModelLookup):
model = Thing
search_fields = ('name__icontains',)

registry.register(ThingLookup)

forms.py

from django import forms

from selectable.forms import AutoCompleteSelectField

from .lookups import ThingLookup

class SimpleForm(forms.Form):
"Basic form for testing."
thing = AutoCompleteSelectField(lookup_class=ThingLookup)

This form has a single field to select a Thing. It does not allow new items. Let’s write some simple tests for this
form.

5.6. Testing Forms and Lookups 27

http://docs.python.org/2/library/unittest.html
https://docs.djangoproject.com/en/stable/topics/testing/
https://docs.djangoproject.com/en/stable/ref/forms/widgets/#django.forms.MultiWidget

Django-Selectable Documentation, Release 1.0.0

tests.py

from django.test import TestCase

from .forms import SimpleForm
from .models import Thing

class SimpleFormTestCase(TestCase):

def test_valid_form(self):
"Submit valid data."
thing = Thing.objects.create(name='Foo', description='Bar')
data = {

'thing_0': thing.name,
'thing_1': thing.pk,

}
form = SimpleForm(data=data)
self.assertTrue(form.is_valid())

def test_invalid_form(self):
"Thing is required but missing."
data = {

'thing_0': 'Foo',
'thing_1': '',

}
form = SimpleForm(data=data)
self.assertFalse(form.is_valid())

Here you will note that while there is only one field thing it requires two items in the POST the first is for the text
input and the second is for the hidden input. This is again due to the use of MultiWidget for the selection.

There is compatibility code in the widgets to lookup the original name from the POST. This makes it easier to transition
to the the selectable widgets without breaking existing tests.

Testing Lookup Results

Testing the lookups used by django-selectable is similar to testing your Django views. While it might be tempting to
use the Django test client, it is slightly easier to use the request factory. A simple example is given below.

tests.py

import json

from django.test import TestCase
from django.test.client import RequestFactory

from .lookups import ThingLookup
from .models import Thing

class ThingLookupTestCase(TestCase):

def setUp(self):
self.factory = RequestFactory()
self.lookup = ThingLookup()
self.test_thing = Thing.objects.create(name='Foo', description='Bar')

def test_results(self):

28 Chapter 5. Contributing

https://docs.djangoproject.com/en/stable/topics/testing/#module-django.test.client
https://docs.djangoproject.com/en/stable/topics/testing/#the-request-factory

Django-Selectable Documentation, Release 1.0.0

"Test full response."
request = self.factory.get("/", {'term': 'Fo'})
response = self.lookup.results(request)
data = json.loads(response.content)['data']
self.assertEqual(1, len(data))
self.assertEqual(self.test_thing.pk, data[1]['id'])

def test_label(self):
"Test item label."
label = self.lookup.get_item_label(self.test_thing)
self.assertEqual(self.test_thing.name, label)

As shown in the test_label example it is not required to test the full request/response. You can test each of the
methods in the lookup API individually. When testing your lookups you should focus on testing the portions which
have been customized by your application.

Fields

Django-Selectable defines a number of fields for selecting either single or multiple lookup items. Item in this context
corresponds to the object return by the underlying lookup get_item. The single select select field AutoCompleteSe-
lectField allows for the creation of new items. To use this feature the field’s lookup class must define create_item.
In the case of lookups extending from Lookups Based on Models newly created items have not yet been saved into the
database and saving should be handled by the form. All fields take the lookup class as the first required argument.

AutoCompleteSelectField

Field tied to AutoCompleteSelectWidget to bind the selection to the form and create new items, if allowed. The
allow_new keyword argument (default: False) which determines if the field allows new items. This field cleans
to a single item.

from django import forms

from selectable.forms import AutoCompleteSelectField

from .lookups import FruitLookup

class FruitSelectionForm(forms.Form):
fruit = AutoCompleteSelectField(lookup_class=FruitLookup, label='Select

→˓a fruit')

lookup_class‘ may also be a dotted path.

AutoCompleteSelectMultipleField

Field tied to AutoCompleteSelectMultipleWidget to bind the selection to the form. This field cleans to a list of items.
AutoCompleteSelectMultipleField does not allow for the creation of new items.

from django import forms

from selectable.forms import AutoCompleteSelectMultipleField

5.7. Fields 29

Django-Selectable Documentation, Release 1.0.0

from .lookups import FruitLookup

class FruitsSelectionForm(forms.Form):
fruits = AutoCompleteSelectMultipleField(lookup_class=FruitLookup,

label='Select your favorite fruits')

Widgets

Below are the custom widgets defined by Django-Selectable. All widgets take the lookup class as the first required
argument.

These widgets all support a query_params keyword argument which is used to pass additional query parameters to
the lookup search. See the section on Adding Parameters on the Server Side for more information.

You can configure the plugin options by passing the configuration dictionary in the data-selectable-options
attribute. The set of options availble include those define by the base autocomplete plugin as well as the removeIcon,
comboboxIcon, and highlightMatch options which are unique to django-selectable.

attrs = {'data-selectable-options': {'highlightMatch': True, 'minLength': 5}}
selectable.AutoCompleteSelectWidget(lookup_class=FruitLookup, attrs=attrs)

AutoCompleteWidget

Basic widget for auto-completing text. The widget returns the item value as defined by the lookup
get_item_value. If the allow_new keyword argument is passed as true it will allow the user to type any
text they wish.

AutoComboboxWidget

Similar to AutoCompleteWidget but has a button to reveal all options.

AutoCompleteSelectWidget

Widget for selecting a value/id based on input text. Optionally allows selecting new items to be created. This widget
should be used in conjunction with the AutoCompleteSelectField as it will return both the text entered by the user and
the id (if an item was selected/matched).

AutoCompleteSelectWidget works directly with Django’s ModelChoiceField. You can simply replace the widget with-
out replacing the entire field.

class FarmAdminForm(forms.ModelForm):

class Meta(object):
model = Farm
widgets = {

'owner': selectable.AutoCompleteSelectWidget(lookup_
→˓class=FruitLookup),

}

30 Chapter 5. Contributing

http://api.jqueryui.com/1.9/autocomplete/
https://docs.djangoproject.com/en/stable/ref/forms/fields/#modelchoicefield

Django-Selectable Documentation, Release 1.0.0

The one catch is that you must use allow_new=False which is the default.

lookup_class may also be a dotted path.

widget = selectable.AutoCompleteWidget(lookup_class='core.lookups.FruitLookup
→˓')

AutoComboboxSelectWidget

Similar to AutoCompleteSelectWidget but has a button to reveal all options.

AutoComboboxSelectWidget works directly with Django’s ModelChoiceField. You can simply replace the widget
without replacing the entire field.

class FarmAdminForm(forms.ModelForm):

class Meta(object):
model = Farm
widgets = {

'owner': selectable.AutoComboboxSelectWidget(lookup_
→˓class=FruitLookup),

}

The one catch is that you must use allow_new=False which is the default.

AutoCompleteSelectMultipleWidget

Builds a list of selected items from auto-completion. This widget will return a list of item ids as defined by the lookup
get_item_id. Using this widget with the AutoCompleteSelectMultipleField will clean the items to the item objects.
This does not allow for creating new items. There is another optional keyword argument postion which can take
four possible values: bottom, bottom-inline, top or top-inline. This determine the position of the deck list of currently
selected items as well as whether this list is stacked or inline. The default is bottom.

AutoComboboxSelectMultipleWidget

Same as AutoCompleteSelectMultipleWidget but with a combobox.

Settings

SELECTABLE_MAX_LIMIT

This setting is used to limit the number of results returned by the auto-complete fields. Each field/widget can individ-
ually lower this maximum. The result sets will be paginated allowing the client to ask for more results. The limit is
passed as a query parameter and validated against this value to ensure the client cannot manipulate the query string to
retrive more values.

Default: 25

5.9. Settings 31

https://docs.djangoproject.com/en/stable/ref/forms/fields/#modelchoicefield

Django-Selectable Documentation, Release 1.0.0

SELECTABLE_ESCAPED_KEYS

The LookupBase.format_item will conditionally escape result keys based on this setting. The label is escaped
by default to prevent a XSS flaw when using the jQuery UI autocomplete. If you are using the lookup responses for a
different autocomplete plugin then you may need to esacpe more keys by default.

Default: ('label',)

Note: You probably don’t want to include id in this setting.

Javascript Plugin Options

Below the options for configuring the Javascript behavior of the django-selectable widgets.

removeIcon

This is the class name used for the remove buttons for the multiple select widgets. The set of icon classes built into
the jQuery UI framework can be found here: http://jqueryui.com/themeroller/

Default: ui-icon-close

comboboxIcon

This is the class name used for the combobox dropdown icon. The set of icon classes built into the jQuery UI
framework can be found here: http://jqueryui.com/themeroller/

Default: ui-icon-triangle-1-s

prepareQuery

prepareQuery is a function that is run prior to sending the search request to the server. It is an oppotunity to add
additional parameters to the search query. It takes one argument which is the current search parameters as a dictionary.
For more information on its usage see Adding Parameters on the Client Side.

Default: null

highlightMatch

If true the portions of the label which match the current search term will be wrapped in a span with the class
highlight.

Default: true

formatLabel

formatLabel is a function that is run prior to rendering the search results in the dropdown menu. It takes two
arguments: the current item label and the item data dictionary. It should return the label which should be used. For
more information on its usage see Label Formats on the Client Side.

Default: null

32 Chapter 5. Contributing

http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

Django-Selectable Documentation, Release 1.0.0

Contributing

There are plenty of ways to contribute to this project. If you think you’ve found a bug please submit an issue. If there
is a feature you’d like to see then please open an ticket proposal for it. If you’ve come up with some helpful examples
then you can add to our example project.

Getting the Source

The source code is hosted on Github. You can download the full source by cloning the git repo:

git clone git://github.com/mlavin/django-selectable.git

Feel free to fork the project and make your own changes. If you think that it would be helpful for other then please
submit a pull request to have it merged in.

Submit an Issue

The issues are also managed on Github issue page. If you think you’ve found a bug it’s helpful if you indicate the
version of django-selectable you are using the ticket version flag. If you think your bug is javascript related it is also
helpful to know the version of jQuery, jQuery UI, and the browser you are using.

Issues are also used to track new features. If you have a feature you would like to see you can submit a proposal ticket.
You can also see features which are planned here.

Submit a Translation

We are working towards translating django-selectable into different languages. There are not many strings to be
translated so it is a reasonably easy task and a great way to be involved with the project. The translations are managed
through Transifex.

Running the Test Suite

There are a number of tests in place to test the server side code for this project. To run the tests you need Django and
mock installed and run:

python runtests.py

tox is used to test django-selectable against multiple versions of Django/Python. With tox installed you can run:

tox

to run all the version combinations. You can also run tox against a subset of supported environments:

tox -e py27-django15

For more information on running/installing tox please see the tox documentation: http://tox.readthedocs.org/en/latest/
index.html

Client side tests are written using QUnit. They can be found in selectable/tests/qunit/index.html. The
test suite also uses PhantomJS to run the tests. You can install PhantomJS from NPM:

5.10. Contributing 33

https://github.com/mlavin/django-selectable
https://github.com/mlavin/django-selectable/issues
https://www.transifex.com/projects/p/django-selectable/
http://www.voidspace.org.uk/python/mock/
http://tox.readthedocs.org/en/latest/index.html
http://tox.readthedocs.org/en/latest/index.html
http://tox.readthedocs.org/en/latest/index.html
http://docs.jquery.com/QUnit
http://phantomjs.org/

Django-Selectable Documentation, Release 1.0.0

Install requirements
npm install -g phantomjs jshint
make test-js

Building the Documentation

The documentation is built using Sphinx and available on Read the Docs. With Sphinx installed you can build the
documentation by running:

make html

inside the docs directory. Documentation fixes and improvements are always welcome.

Release Notes

v1.0.0 (Released 2017-04-14)

This project has been stable for quite some time and finally declaring a 1.0 release. With that comes new policies on
official supported versions for Django, Python, jQuery, and jQuery UI.

• New translations for German and Czech.

• Various bug and compatibility fixes.

• Updated example project.

Special thanks to Raphael Merx for helping track down issues related to this release and an updating the example
project to work on Django 1.10.

Backwards Incompatible Changes

• Dropped support Python 2.6 and 3.2

• Dropped support for Django < 1.7. Django 1.11 is not yet supported.

• LookupBase.serialize_results had been removed. This is now handled by the built-in
JsonResponse in Django.

• jQuery and jQuery UI versions for the include_jquery_libs and include_ui_theme template tags
have been increased to 1.12.4 and 1.11.4 respectively.

• Dropped testing support for jQuery < 1.9 and jQuery UI < 1.10. Earlier versions may continue to work but it is
recommended to upgrade.

v0.9.0 (Released 2014-10-21)

This release primarily addresses incompatibility with Django 1.7. The app-loading refactor both broke the previous
registration and at the same time provided better utilities in Django core to make it more robust.

• Compatibility with Django 1.7. Thanks to Calvin Spealman for the fixes.

• Fixes for Python 3 support.

34 Chapter 5. Contributing

http://sphinx.pocoo.org/
http://django-selectable.readthedocs.io/

Django-Selectable Documentation, Release 1.0.0

Backwards Incompatible Changes

• Dropped support for jQuery < 1.7

v0.8.0 (Released 2014-01-20)

• Widget media references now include a version string for cache-busting when upgrading django-selectable.
Thanks to Ustun Ozgur.

• Added compatibility code for *SelectWidgets to handle POST data for the default SelectWidget. Thanks to
leo-the-manic.

• Development moved from Bitbucket to Github.

• Update test suite compatibility with new test runner in Django 1.6. Thanks to Dan Poirier for the report and fix.

• Tests now run on Travis CI.

• Added French and Chinese translations.

Backwards Incompatible Changes

• Support for Django < 1.5 has been dropped. Most pieces should continue to work but there was an ugly JS hack
to make django-selectable work nicely in the admin which too flakey to continue to maintain. If you aren’t using
the selectable widgets in inline-forms in the admin you can most likely continue to use Django 1.4 without issue.

v0.7.0 (Released 2013-03-01)

This release features a large refactor of the JS plugin used by the widgets. While this over makes the plugin more main-
tainable and allowed for some of the new features in this release, it does introduce a few incompatible changes. For
the most part places where you might have previously used the autocomplete namespace/plugin, those references
should be updated to reference the djselectable plugin.

This release also adds experimental support for Python 3.2+ to go along with Django’s support in 1.5. To use Python
3 with django-selectable you will need to use Django 1.5+.

• Experimental Python 3.2+ support

• Improved the scope of prepareQuery and formatLabel options. Not fully backwards compatible. Thanks
to Augusto Men.

• Allow passing the Python path string in place of the lookup class to the fields and widgets. Thanks to Michael
Manfre.

• Allow passing JS plugin options through the widget attrs option. Thanks to Felipe Prenholato.

• Tests for compatibility with jQuery 1.6 through 1.9 and jQuery UI 1.8 through 1.10.

• Added notes on Bootstrap compatibility.

• Added compatibility with Grappelli in the admin.

• Added Spanish translation thanks to Manuel Alvarez.

• Added documentation notes on testing.

5.11. Release Notes 35

Django-Selectable Documentation, Release 1.0.0

Bug Fixes

• Fixed bug with matching hidden input when the name contains ‘_1’. Thanks to Augusto Men for the report and
fix.

• Fixed bug where the enter button would open the combobox options rather than submit the form. Thanks to
Felipe Prenholato for the report.

• Fixed bug with using allow_new=True creating items when no data was submitted. See #91.

• Fixed bug with widget has_changed when there is no initial data. See #92.

Backwards Incompatible Changes

• The JS event namespace has changed from autocomplete to djselectable.

• data('autocomplete') is no longer available on the widgets on the client-side. Use
data('djselectable') instead.

• Combobox button was changed from a <button> to <a>. Any customized styles you may have should be
updated.

• Combobox no longer changes the minLength or delay options.

v0.6.2 (Released 2012-11-07)

Bug Fixes

• Fixed bug with special characters when highlighting matches. Thanks to Chad Files for the report.

• Fixed javascript bug with spaces in item.id. Thanks to @dc for the report and fix.

v0.6.1 (Released 2012-10-13)

Features

• Added Polish translation. Thanks to Sławomir Ehlert.

Bug Fixes

• Fixed incompatibility with jQuery UI 1.9.

v0.6.0 (Released 2012-10-09)

This release continues to clean up the API and JS. This was primarily motivated by Sławomir Ehlert (@slafs) who is
working on an alternate implementation which uses Select2 rather than jQuery UI. This opens the door for additional
apps which use the same lookup declaration API with a different JS library on the front end.

Python 2.5 support has been dropped to work towards Python 3 support. This also drops Django 1.2 support which is
no longer receiving security fixes.

36 Chapter 5. Contributing

Django-Selectable Documentation, Release 1.0.0

Features

• Initial translations (pt_BR). Thanks to Felipe Prenholato for the patch.

• Upgraded default jQuery UI version included by the template tags from 1.8.18 to 1.8.23

• Added djselectableadd and djselectableremove events fired when items are added or removed
from a mutliple select

Bug Fixes

• Cleaned up JS scoping problems when multiple jQuery versions are used on the page. Thanks Antti Kaihola for
the report.

• Fixed minor JS bug where text input was not cleared when selected via the combobox in the multiselect. Thanks
Antti Kaihola for the report and Lukas Pirl for a hotfix.

Backwards Incompatible Changes

• get_item_value and get_item_id are no longer marked as safe by default.

• Removed AutoComboboxSelectField and AutoComboboxSelectMultipleField. These were deprecated in 0.5.

• Dropping official Python 2.5 support.

• Dropping official Django 1.2 support.

• paginate_results signature changed as part of the lookup refactor.

• SELECTABLE_MAX_LIMIT can no longer be None.

v0.5.2 (Released 2012-06-27)

Bug Fixes

• Fixed XSS flaw with lookup get_item_* methods. Thanks slafs for the report.

• Fixed bug when passing widget instance rather than widget class to AutoCompleteSelectField or
AutoCompleteSelectMultipleField.

v0.5.1 (Released 2012-06-08)

Bug Fixes

• Fix for double autocompleteselect event firing.

• Fix for broken pagination in search results. Thanks David Ray for report and fix.

v0.4.2 (Released 2012-06-08)

Bug Fixes

• Backported fix for double autocompleteselect event firing.

• Backported fix for broken pagination in search results.

5.11. Release Notes 37

Django-Selectable Documentation, Release 1.0.0

v0.5.0 (Released 2012-06-02)

Features

• Template tag to add necessary jQuery and jQuery UI libraries. Thanks to Rick Testore for the initial implemen-
tation

• Lookup decorators for requiring user authentication or staff access to use the lookup

• Additional documentation

• Minor updates to the example project

Backwards Incompatible Changes

• Previously the minimal version of jQuery was listed as 1.4.3 when it fact there was a bug a that made django-
selectable require 1.4.4. Not a new incompatibility but the docs have now been updated and 1.4.3 compatibility
will not be added. Thanks to Rick Testore for the report and the fix

• Started deprecation path for AutoComboboxSelectField and AutoComboboxSelectMultipleField

v0.4.1 (Released 2012-03-11)

Bug Fixes

• Cleaned up whitespace in css/js. Thanks Dan Poirier for the report and fix.

• Fixed issue with saving M2M field data with AutoCompleteSelectMultipleField. Thanks Raoul Thill for the
report.

v0.4.0 (Released 2012-02-25)

Features

• Better compatibility with AutoCompleteSelectWidget/AutoComboboxSelectWidget and Django’s ModelChoice-
Field

• Better compatibility with the Django admin add another popup

• Easier passing of query parameters. See the Additional Parameters section

• Additional documentation

• QUnit tests for JS functionality

Backwards Incompatible Changes

• Support for ModelLookup.search_field string has been removed. You should use the ModelLookup.
search_fields tuple instead.

38 Chapter 5. Contributing

Django-Selectable Documentation, Release 1.0.0

v0.3.1 (Released 2012-02-23)

Bug Fixes

• Fixed issue with media urls when not using staticfiles.

v0.3.0 (Released 2012-02-15)

Features

• Multiple search fields for model based lookups

• Support for highlighting term matches

• Support for HTML in result labels

• Support for client side formatting

• Additional documentation

• Expanded examples in example project

Bug Fixes

• Fixed issue with Enter key removing items from select multiple widgets #24

Backwards Incompatible Changes

• The fix for #24 changed the remove items from a button to an anchor tag. If you were previously using the
button tag for additional styling then you will need to adjust your styles.

• The static resources were moved into a selectable sub-directory. This makes the media more in line with the
template directory conventions. If you are using the widgets in the admin there is nothing to change. If you are
using {{ form.media }} then there is also nothing to change. However if you were including static media
manually then you will need to adjust them to include the selectable prefix.

v0.2.0 (Released 2011-08-13)

Features

• Additional documentation

• Positional configuration for multiple select fields/widgets

• Settings/configuration for limiting/paginating result sets

• Compatibility and examples for Admin inlines

• JS updated for jQuery 1.6 compatibility

• JS hooks for updating query parameters

• Chained selection example

5.11. Release Notes 39

https://github.com/mlavin/django-selectable/issues/24

Django-Selectable Documentation, Release 1.0.0

v0.1.2 (Released 2011-05-25)

Bug Fixes

• Fixed issue #17

v0.1.1 (Release 2011-03-21)

Bug Fixes

• Fixed/cleaned up multiple select fields and widgets

• Added media definitions to widgets

Features

• Additional documentation

• Added update_query_parameters to widgets

• Refactored JS for easier configuration

v0.1 (Released 2011-03-13)

Initial public release

40 Chapter 5. Contributing

https://github.com/mlavin/django-selectable/issues/17

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

41

Django-Selectable Documentation, Release 1.0.0

42 Chapter 6. Indices and tables

Index

C
create_item() (LookupBase method), 15

F
format_item() (LookupBase method), 16
format_results() (LookupBase method), 16

G
get_item() (LookupBase method), 15
get_item_id() (LookupBase method), 15
get_item_label() (LookupBase method), 15
get_item_value() (LookupBase method), 15
get_query() (LookupBase method), 15

P
paginate_results() (LookupBase method), 16

43

	Features
	Installation Requirements
	Documentation
	Additional Help/Support
	Contributing
	Overview
	Getting Started
	Defining Lookups
	Advanced Usage
	Admin Integration
	Testing Forms and Lookups
	Fields
	Widgets
	Settings
	Contributing
	Release Notes

	Indices and tables

